PRIMARY INTERSECTIONS FOR TWO SIDED IDEALS OF A NOETHERIAN MATRIX RING

ву EDMUND H. FELLER

Introduction. The purpose of this paper is to obtain certain primary intersections as described in [1] for all two sided ideals in the matrix ring D_n where D is a Noetherian ring. We refer to such a ring as a Noetherian matrix ring. The primary intersections will depend only upon the Noetherian ring D. The following discussion will show that if the primary intersections of the ideals in D are known one can immediately write primary intersections for all two sided ideals in D_n .

1. **Reformulation of theorems.** The following two theorems are reformulations of the author's Theorems 2.5 and 2.7 of [1]. The proofs are very similar to those of Noether [5] and Krull [4] and therefore were not included in [1] and are not included here. (See [2, pp. 172–181]). The definitions of [1] are used here.

THEOREM 1.1. Let $N=N_1\cap\cdots\cap N_s=N_1^\sharp\cap\cdots\cap N_s^\sharp$ be irreduciant intersections where N_i , N_i^\sharp are irreducible R submodules, $i=1,\ 2,\ \cdots$, s. Let H be a subring of $\bigcap_{i=1}^s \left[V^*(N_i)\cap V^*(N_i^\sharp)\right]$ containing the identity element, then the set of distinct H radicals of $N_1,\ \cdots,\ N_s$ is identical with the set of distinct H radicals of $N_1^\sharp,\ \cdots,\ N_s^\sharp$ in H.

From this theorem and Theorem 2.6 of [1] we have

THEOREM 1.2. Let N be an R submodule of the A-R module M which satisfies the A.C.C. for R submodules(1). Let α be an index that ranges over a possibly infinite set G whose cardinal number is ψ and let $N = \bigcap_{i=1}^{t} N_{i\alpha}$ be a set of ψ irredundant representations of N as the intersection of irreducible R submodules $N_{i\alpha}$ of M. Let H(G) be a subring with identity of $\bigcap V^*(N_{i\alpha})$ where i ranges from 1 to t and α ranges over G. Then for the α th intersection there exist H primary R submodules $N'_{1\alpha}, \dots, N'_{s\alpha}$ with distinct H radicals p_1, \dots, p_s such that $N = N'_{1\alpha} \bigcap \dots \bigcap N'_{s\alpha}$. If $N = N'_{1\beta} \bigcap \dots \bigcap N'_{r\beta}$ is another such intersection where β is an index of G then r = s and for a suitable rearrangement of the subscripts the corresponding H radicals are equal.

2. Primary intersections for two sided ideals in D_n . A ring with identity as a A-R module if one takes as A the ring of left multiplications and as R the ring of right multiplications. Thus theorems of this paper and [1] apply to rings with identity that satisfy the A.C.C. for right ideals.

Received by the editors April 22, 1957.

⁽¹⁾ An A-R module is defined as a right A, right R module in [3, page 17].

Let D be a Noetherian ring. We shall consider the application of these theorems to all two sided ideals of D_n , the ring of n by n matrices with elements in D.

If I is an ideal of D then the set of all matrices (a_{ij}) with $a_{ij} \in D$ for $i \neq k$ and $a_{ki} \in I$ is a right ideal of D_n which we shall denote by (I, k).

STATEMENT 2.1. If I is an ideal of D and (I, k) is contained in a right ideal H of D_n then H is of the form (I', k) where I' is an ideal of D which contains I.

Proof. Suppose as in the statement that $(I, k) \subseteq H$. The set of elements I' that appear in the kth row of H is an ideal of D. For suppose $a, b \in I'$ and say a appears in the matrix A of H in the (k, i) position and b appears in the matrix B of H in the (k, j) position. Let E_{ij} denote the matrix with 1 in the (i, j) position and zero elsewhere. Then $AE_{i1}+BE_{j1}$ is a matrix which contains a+b in the kth row. If $c\in D$ then $AE_{ii}c$ is a matrix which contains acin the kth row. Next we shall show that if c is an element of I' then H contains a matrix with c in position (k, 1) and zero elsewhere. Since $c \in I'$ there exist a matrix with c in the kth row and by proper multiplication by the elements of D_n on the right H must contain a matrix (a_{ij}) , $a_{i1} \in D$, $a_{k1} = c$, $a_{ij}=0$ for j>1. Since $(I, k)\subseteq H$, H contains a matrix (b_{ij}) , $b_{i1}=a_{i1}$, $b_{k1}=0$, $b_{ij} = 0$ for j > 1. Hence $(a_{ij}) - (b_{ij}) = (c_{ij})$ where $c_{1k} = c$, $c_{ij} = 0$ for $i \neq 1$ and $j \neq k$. Consequently, since the right ideal $(0, k) \subseteq (I, k) \subseteq H$, we have $(c_{ij}) + (0, k)$ $\subseteq H$, i.e., the element c appears in the kth row of the first column and hence in every column with all combinations of the elements of D in the $j\neq k$ rows. Since this is true for all elements $c \in I'$, we have H = (I', k).

STATEMENT 2.2. If I is an irreducible(2) ideal of D, then (I,k), $k = 1, 2, \dots, n$, is an irreducible(2) right ideal of D_n .

Proof. We shall prove that (I, k) is irreducible. Suppose $(I, k) = H_1 \cap H_2$ where H_1 and H_2 are right ideals of D_n which properly include (I, k). Then by Statement 2.1, H_1 and H_2 are of the form (I_1, k) and (I_2, k) , where I_1 and I_2 are ideals of D. Hence $I = I_1 \cap I_2$ where I_1 and I_2 properly include I—contradiction.

For an irreducible ideal I of D we have from [1, Theorem 2.1] and the preceding statement that (I, k) is $V^*[(I, k)]$ primary, where $V^*[(I, k)]$ is the set of elements A in D_n such that $A(I, k) \subseteq (I, k)$, in the sense that if $AB \in (I, k)$, $B \in (I, k)$, $A \in V^*[(I, k)]$, then $A^t \in (I, k)$ for some positive integer t.

Let (I_1, I_2, k) denote the set of all matrices (a_{ij}) where $a_{ij} \in D$, $i \neq k$, $a_{kj} \in I_1$, $j \neq k$, and $a_{kk} \in I_2$ where I_1 and I_2 are ideals of D.

STATEMENT 2.3. $V^*[(I, k)] = (I, D, k)$.

Proof. Certainly $(I, D, k) \subseteq V^*[(I, k)]$. Suppose $A = (a_{ij}) \oplus (I, D, k)$, say $a_{kj} \notin I$ for $j \neq k$. Let E_{jk} denote the matrix with 1 in the (j, k) position and zero

⁽²⁾ An ideal here is irreducible in the sense that it is not the intersection of two right ideals which properly contain it.

elsewhere. Then for E_{jk} contained in (I, k) we have $AE_{jk} \oplus (I, k)$ since AE_{jk} contains a_{kj} in the (k, k) position. This proves the statement.

The V^* radical of (I, k) in (I, D, k) is the set of matrices A in (I, D, k) such that $A^t \in (I, k)$ for some positive integer t.

Statement 2.4. The V^* radical of (I, k) is (I, P, k) where P is the radical of the ideal I in D. (I, P, k) is a completely prime two sided ideal of V^* .

Proof. If $(a_{ij}) \in (I, D, k)$, then $(a_{ij})^t = (b_{ij})$ where $b_{ij} \in D$, $i \neq k$, $b_{kj} \in I$, $j \neq k$, $b_{kk} = c + a_{kk}^t$ for $c \in I$. Hence $(a_{ij})^t$ is contained in (I, k) if and only if $a_{kk}^t \in I$ for some positive integer t, i.e., a_{kk} is contained in the radical of I in D. The second part follows from Theorem 2.2 of [1].

From [3, p. 40] the ideals of D_n are of the form I_n where I is an ideal of D. From the irreducible intersections for I in D we can write irreducible intersections for I_n in D_n . This is displayed in the next theorem the proof of which is most direct and is therefore omitted.

THEOREM 2.1. Let I_n be a two sided ideal in D_n where D is a Noetherian ring. Let α be an index that ranges over a possibly infinite set E whose cardinal number is σ and let $I = I_{1\alpha} \cap I_{2\alpha} \cap \cdots \cap I_{s\alpha}$ be a set of σ irredundant representations of I as an intersection of irreducible ideals $I_{i\alpha}$ in D. Then the equation

$$(Z) I_n = \bigcap_{i=1}^s \bigcap_{k=1}^n (I_{i\alpha_k}, k)$$

in which, for each value of k, a_k is an arbitrary index from the set E, defines σ^n representations of I_n as an irredundant intersection of irreducible right ideals of D_n .

For an intersection of the form (Z), since the V^* radical of $(I_{i\alpha_k}, k)$ is $(I_{i\alpha_k}, P, k)$ where P is the radical of $I_{i\alpha_k}$, these radicals will all be different. In addition if different ideals of I are used in two intersections for I_n of the form (Z) none of the V^* radicals will be equal.

Let us now apply Theorems 2.6 of [1], 1.1, and 1.2 of this paper. For the σ intersections of Theorem 2.1, consider as in Theorem 2.1 the set S of σ^n intersections for I_n which can be formed from this set. Then $H = \bigcap V^*(I_{i\alpha}, k)$ where this intersection is taken over all i, k, and α , which of course could be an infinite intersection. However for any one intersection of the form (Z) the intersection of the n $V^*(I_{i\alpha}, k)$'s involved in this intersection is the set of all matrices (a_{ij}) where $a_{ij} \in I$ for $i \neq j$, $a_{ii} \in D$ which we shall denote by $(I \setminus D)$. Since this is true for all intersections of the form (Z) we have $H = (I \setminus D)$ which is a finite intersection. In general if I_1 and I_2 are ideals of D we shall denote by $(I_1 \setminus I_2)$ the set of all matrices (a_{ij}) with $a_{ij} \in I_1$ for $i \neq j$, $a_{ii} \in I_2$. Then the radical of $(I_{i\alpha}, k)$ in $(I \setminus D)$ will be the set of all matrices (a_{ij}) where $a_{ij} \in I$, $a_{ij} \in D$ for $a_{ij} \in I$, $a_{ik} \in I$ where I is the radical of $I_{i\alpha}$ in I. We

shall denote such an ideal by $(I \setminus D, P, k)(^3)$. Consequently in $(I \setminus D)$ two radicals $(I \setminus D, P_1, k_1)$ and $(I \setminus D, P_2, k_2)$ will be equal if and only if $P_1 = P_2$ and $k_1 = k_2$. Thus we can apply Theorem 2.6 of [1] and combine the right ideals of (Z) which have the same radicals in $(I \setminus D)$. This will result in an intersection of primary $(I \setminus D)$ right ideals of D_n which is equal to I_n .

Since two radicals $(I \setminus D, P_1, k)$ and $(I \setminus D, P_2, m)$ will be equal if and only if $P_1 = P_2$ and k = m then in (Z) we have $(I_{i\alpha_k}, k) \cap (I_{j\alpha_m}, m)$ will be $(I \setminus D)$ primary if and only if k = m and $I_{i\alpha_k} \cap I_{j\alpha_m}$ is a primary ideal of D. Thus in applying Theorem 2.6 of [1] we combine the right ideals of (Z) to write $(I \setminus D)$ primary intersections for I_n with distinct $(I \setminus D)$ radicals.

From the previous discussion and Theorem 1.2 we have

THEOREM 2.2. Let I_n be a two sided ideal of D_n where D is a Noetherian ring. Let α be an index that ranges over a possibly infinite set F whose cardinal number if ρ and let $I = J_{1\alpha} \cap \cdots \cap J_{r\alpha}$ be a set of ρ intersections for I where $J_{i\alpha}$ are primary ideals of D. Then the equation

$$(Y) I_n = \bigcap_{i=1}^r \bigcap_{k=1}^n (J_{i\alpha_k}, k)$$

in which, for each value of k, α_k is an arbitrary index from the set F, defines ρ^n representations of I_n as the intersection of $(I \backslash D)$ primary right ideals where the $(I \backslash D)$ radicals are distinct for each representation. For any two of these representations the $(I \backslash D)$ radicals are for some ordering equal.

One may now ask: (1) Are the primary intersections for I_n discussed here the only such intersections? (2) How can one write primary intersections for all right ideals of D_n ?

BIBLIOGRAPHY

- 1. E. H. Feller, The lattice of submodules of a module over a noncommutative ring, Trans. Amer. Math. Soc. vol. 81 (1956) pp. 342-357.
 - 2. N. Jacobson, Lectures in abstract algebra, Van Nostrand Co., 1951.
 - 3. ——, Structure of rings, Amer. Math. Soc. Colloquium Publications, vol. 37, 1956.
- 4. W. Krull, Ein neuer Beweis für die Haupsätze der allgemeinen Idealtheorie, Math. Ann. vol. 90 (1923) p. 55.
 - 5. E. Noether, Idealtheorie in Ringbereichen, Math. Ann. vol. 83 (1921) pp. 24-66.

University of Wisconsin-Milwaukee, Milwaukee, Wis.

⁽³⁾ The radical of I in $(I \setminus D)$ will be equal to $(I \setminus P)$ where P is the radical of I in D.